02/02/2021

CPCGAN: A Controllable 3D Point Cloud Generative Adversarial Network with Semantic Label Generating

Ximing Yang, Yuan Wu, Kaiyi Zhang, Cheng Jin

Keywords:

Abstract: Generative Adversarial Networks (GAN) are good at generating variant samples of complex data distributions. Generating a sample with certain properties is one of the major tasks in the real-world application of GANs. In this paper, we propose a novel generative adversarial network to generate 3D point clouds from random latent codes, named Controllable Point Cloud Generative Adversarial Network(CPCGAN). A two-stage GAN framework is utilized in CPCGAN and a sparse point cloud containing major structural information is extracted as the middle-level information between the two stages. With their help, CPCGAN has the ability to control the generated structure and generate 3D point clouds with semantic labels for points. Experimental results demonstrate that the proposed CPCGAN outperforms state-of-the-art point cloud GANs.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948447
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers