02/02/2021

Robust Lightweight Facial Expression Recognition Network with Label Distribution Training

Zengqun Zhao, Qingshan Liu, Feng Zhou

Keywords:

Abstract: This paper presents an efficiently robust facial expression recognition (FER) network, named EfficientFace, which holds much fewer parameters but more robust to the FER in the wild. Firstly, to improve the robustness of the lightweight network, a local-feature extractor and a channel-spatial modulator are designed, in which the depthwise convolution is employed. As a result, the network is aware of local and global-salient facial features. Then, considering the fact that most emotions occur as combinations, mixtures, or compounds of the basic emotions, we introduce a simple but efficient label distribution learning (LDL) method as a novel training strategy. Experiments conducted on realistic occlusion and pose variation datasets demonstrate that the proposed EfficientFace is robust under occlusion and pose variation conditions. Moreover, the proposed method achieves state-of-the-art results on RAF-DB, CAER-S, and AffectNet-7 datasets with accuracies of 88.36%, 85.87%, and 63.70%, respectively, and a comparable result on the AffectNet-8 dataset with an accuracy of 59.89%. The code is public available at https://github.com/zengqunzhao/EfficientFace.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948076
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers