02/02/2021

Dependency Stochastic Boolean Satisfiability: A Logical Formalism for NEXPTIME Decision Problems with Uncertainty

Nian-Ze Lee, Jie-Hong R. Jiang

Keywords:

Abstract: Stochastic Boolean Satisfiability (SSAT) is a logical formalism to model decision problems with uncertainty, such as Partially Observable Markov Decision Process (POMDP) for verification of probabilistic systems. SSAT, however, is limited by its descriptive power within the PSPACE complexity class. More complex problems, such as the NEXPTIME-complete Decentralized POMDP (Dec-POMDP), cannot be succinctly encoded with SSAT. To provide a logical formalism of such problems, we generalize the Dependency Quantified Boolean Formula (DQBF), a representative problem in the NEXPTIME-complete class, to its stochastic variant, named Dependency SSAT (DSSAT), and show that DSSAT is also NEXPTIME-complete. We demonstrate the potential applications of DSSAT to circuit synthesis of probabilistic and approximate design. Furthermore, to study the descriptive power of DSSAT, we establish a polynomial-time reduction from Dec-POMDP to DSSAT. With the theoretical foundations paved in this work, we hope to encourage the development of DSSAT solvers for potential broad applications.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948893
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers