02/02/2021

Detecting Beneficial Feature Interactions for Recommender Systems

Yixin Su, Rui Zhang, Sarah Erfani, Zhenghua Xu

Keywords:

Abstract: Feature interactions are essential for achieving high accuracy in recommender systems. Many studies take into account the interaction between every pair of features. However, this is suboptimal because some feature interactions may not be that relevant to the recommendation result and taking them into account may introduce noise and decrease recommendation accuracy. To make the best out of feature interactions, we propose a graph neural network approach to effectively model them, together with a novel technique to automatically detect those feature interactions that are beneficial in terms of recommendation accuracy. The automatic feature interaction detection is achieved via edge prediction with an L0 activation regularization. Our proposed model is proved to be effective through the information bottleneck principle and statistical interaction theory. Experimental results show that our model (i) outperforms existing baselines in terms of accuracy, and (ii) automatically identifies beneficial feature interactions.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947766
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers