02/02/2021

The Price of Connectivity in Fair Division

Xiaohui Bei, Ayumi Igarashi, Xinhang Lu, Warut Suksompong

Keywords:

Abstract: We study the allocation of indivisible goods that form an undirected graph and quantify the loss of fairness when we impose a constraint that each agent must receive a connected subgraph. Our focus is on the well-studied fairness notion of maximin share fairness. We introduce the price of connectivity to capture the largest gap between the graph-specific and the unconstrained maximin share, and derive bounds on this quantity which are tight for large classes of graphs in the case of two agents and for paths and stars in the general case. For instance, with two agents we show that for biconnected graphs it is possible to obtain at least 3/4 of the maximin share with connected allocations, while for the remaining graphs the guarantee is at most 1/2. Our work demonstrates several applications of graph-theoretic tools and concepts to fair division problems.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947860
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers