02/02/2021

Convergence Analysis of No-Regret Bidding Algorithms in Repeated Auctions

Zhe Feng, Guru Guruganesh, Christopher Liaw, Aranyak Mehta, Abhishek Sethi

Keywords:

Abstract: The connection between games and no-regret algorithms has been widely studied in the literature. A fundamental result is that when all players play no-regret strategies, this produces a sequence of actions whose time-average is a coarse-correlated equilibrium of the game. However, much less is known about equilibrium selection in the case that multiple equilibria exist. In this work, we study the convergence of no-regret bidding algorithms in auctions. Besides being of theoretical interest, bidding dynamics in auctions is an important question from a practical viewpoint as well. We study the repeated game between bidders in which a single item is sold at each time step and the bidder's value is drawn from an unknown distribution. We show that if the bidders use any mean-based learning rule then the bidders converge with high probability to the truthful pure Nash Equilibrium in a second price auction, in VCG auction in the multi-slot setting and to the Bayesian Nash equilibrium in a first price auction. We note mean-based algorithms cover a wide variety of known no-regret algorithms such as Exp3, UCB, \epsilon-Greedy etc. Also, we analyze the convergence of the individual iterates produced by such learning algorithms, as opposed to the time-average of the sequence. Our experiments corroborate our theoretical findings and also find a similar convergence when we use other strategies such as Deep Q-Learning.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948366
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers