02/02/2021

Contrastive Adversarial Learning for Person Independent Facial Emotion Recognition

Daeha Kim, Byung Cheol Song

Keywords:

Abstract: Since most facial emotion recognition (FER) methods significantly rely on supervision information, they have a limit to analyzing emotions independently of persons. On the other hand, adversarial learning is a well-known approach for generalized representation learning because it never requires supervision information. This paper presents a new adversarial learning for FER. In detail, the proposed learning enables the FER network to better understand complex emotional elements inherent in strong emotions by adversarially learning weak emotion samples based on strong emotion samples. As a result, the proposed method can recognize the emotions independently of persons because it understands facial expressions more accurately. In addition, we propose a contrastive loss function for efficient adversarial learning. Finally, the proposed adversarial learning scheme was theoretically verified, and it was experimentally proven to show state of the art (SOTA) performance.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947991
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers