02/02/2021

Parameterized Complexity of Small Decision Tree Learning

Sebastian Ordyniak, Stefan Szeider

Keywords:

Abstract: We study the NP-hard problem of learning a decision tree (DT) of smallest depth or size from data. We provide the first parameterized complexity analysis of the problem and draw a detailed parameterized complexity map for the natural parameters: size or depth of the DT, maximum domain size of all features, and the maximum Hamming distance between any two examples. Our main result shows that learning DTs of smallest depth or size is fixed-parameter tractable (FPT) parameterized by the combination of all three of these parameters. We contrast this FPT-result by various hardness results that underline the algorithmic significance of the considered parameters.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948574
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers