02/02/2021

A Blind Block Term Decomposition of High Order Tensors

Yunfeng Cai, Ping Li

Keywords:

Abstract: Tensor decompositions have found many applications in signal processing, data mining, machine learning, etc. In particular, the block term decomposition (BTD), which is a generalization of CP decomposition and Tucker decomposition/HOSVD, has been successfully used for the compression and acceleration of neural networks. However, computing BTD is NP-hard, and optimization based methods usually suffer from slow convergence or even fail to converge, which limits the applications of BTD. This paper considers a “blind” block term decomposition (BBTD) of high order tensors, in which the block diagonal structure of the core tensor is unknown. Our contributions include: 1) We establish the necessary and sufficient conditions for the existence of BTD, characterize the condition when a BTD solves the BBTD problem, and show that the BBTD is unique under a “low rank” assumption. 2) We propose an algebraic method to compute the BBTD. This method transforms the problem of determining the block diagonal structure of the core tensor into a clustering problem of complex numbers, in polynomial time. And once the clustering problem is solved, the BBTD can be obtained via computing several matrix decompositions. Numerical results show that our method is able to compute the BBTD, even in the presence of noise to some extent, whereas optimization based methods (e.g., MINF and NLS in TENSORLAB) may fail to converge.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949122
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers