02/02/2021

DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation

Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jhin, Noseong Park

Keywords:

Abstract: We present a method for learning dynamics of complex physical processes described by time-dependent nonlinear partial differential equations (PDEs). Our particular interest lies in extrapolating solutions in time beyond the range of temporal domain used in training. Our choice for a baseline method is physics-informed neural network (PINN) because the method parameterizes not only the solutions, but also the equations that describe the dynamics of physical processes. We demonstrate that PINN performs poorly on extrapolation tasks in many benchmark problems. To address this, we propose a novel method for better training PINN and demonstrate that our newly enhanced PINNs can accurately extrapolate solutions in time. Our method shows up to 72% smaller errors than state-of-the-art methods in terms of the standard L2-norm metric.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948500
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers