02/02/2021

Learnable Dynamic Temporal Pooling for Time Series Classification

Dongha Lee, Seonghyeon Lee, Hwanjo Yu

Keywords:

Abstract: With the increase of available time series data, predicting their class labels has been one of the most important challenges in a wide range of disciplines. Recent studies on time series classification show that convolutional neural networks (CNN) achieved the state-of-the-art performance as a single classifier. In this work, pointing out that the global pooling layer that is usually adopted by existing CNN classifiers discards the temporal information of high-level features, we present a dynamic temporal pooling (DTP) technique that reduces the temporal size of hidden representations by aggregating the features at the segment-level. For the partition of a whole series into multiple segments, we utilize dynamic time warping (DTW) to align each time point in a temporal order with the prototypical features of the segments, which can be optimized simultaneously with the network parameters of CNN classifiers. The DTP layer combined with a fully-connected layer helps to extract further discriminative features considering their temporal position within an input time series. Extensive experiments on both univariate and multivariate time series datasets show that our proposed pooling significantly improves the classification performance.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948063
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers