02/02/2021

Multi-View Representation Learning with Manifold Smoothness

Shu Li, Wei Wang, Wen-Tao Li, Pan Chen

Keywords:

Abstract: Multi-view representation learning attempts to learn a representation from multiple views and most existing methods are unsupervised. However, representation learned only from unlabeled data may not be discriminative enough for further applications (e.g., clustering and classification). For this reason, semi-supervised methods which could use unlabeled data along with the labeled data for multi-view representation learning need to be developed. Manifold information plays an important role in semi-supervised learning, but it has not been considered for multi-view representation learning. In this paper, we introduce the manifold smoothness into multi-view representation learning and propose MvDGAT which learns the representation and the intrinsic manifold simultaneously with graph attention network. Experiments conducted on real-world datasets reveal that our MvDGAT can achieve better performance than state-of-the-art methods.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948505
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers