02/02/2021

5* Knowledge Graph Embeddings with Projective Transformations

Mojtaba Nayyeri, Sahar Vahdati, Can Aykul, Jens Lehmann

Keywords:

Abstract: Performing link prediction using knowledge graph embedding models has become a popular approach for knowledge graph completion. Such models employ a transformation function that maps nodes via edges into a vector space in order to measure the likelihood of the links. While mapping the individual nodes, the structure of subgraphs is also transformed. Most of the embedding models designed in Euclidean geometry usually support a single transformation type -- often translation or rotation, which is suitable for learning on graphs with small differences in neighboring subgraphs. However, multi-relational knowledge graphs often include multiple subgraph structures in a neighborhood (e.g.~combinations of path and loop structures), which current embedding models do not capture well. To tackle this problem, we propose a novel KGE model 5*E in projective geometry, which supports multiple simultaneous transformations -- specifically inversion, reflection, translation, rotation, and homothety. The model has several favorable theoretical properties and subsumes the existing approaches. It outperforms them on most widely used link prediction benchmarks

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948981
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 3:20