02/02/2021

Second Order Techniques for Learning Time-series with Structural Breaks

Takayuki Osogami

Keywords:

Abstract: We study fundamental problems in learning nonstationary time-series: how to effectively regularize time-series models and how to adaptively tune forgetting rates. The effectiveness of L2 regularization depends on the choice of coordinates, and the variables need to be appropriately normalized. In nonstationary environment, however, what is appropriate can vary over time. Proposed regularization is invariant to the invertible linear transformation of coordinates, eliminating the necessity of normalization. We also propose an ensemble learning approach to adaptively tuning the forgetting rate and regularization-coefficient. We train multiple models with varying hyperparameters and evaluate their performance by the use of multiple hyper forgetting rates. At each step, we choose the best performing model on the basis of the best performing hyper forgetting rate. The effectiveness of the proposed approaches is demonstrated with real time-series.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948028
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers