02/02/2021

Gene Regulatory Network Inference as Relaxed Graph Matching

Deborah Weighill, Marouen Ben Guebila, Camila Lopes-Ramos, Kimberly Glass, John Quackenbush, John Platig, Rebekka Burkholz

Keywords:

Abstract: Bipartite network inference is a ubiquitous problem across disciplines. One important example in the field molecular biology is gene regulatory network inference. Gene regulatory networks are an instrumental tool aiding in the discovery of the molecular mechanisms driving diverse diseases, including cancer. However, only noisy observations of the projections of these regulatory networks are typically assayed. In an effort to better estimate regulatory networks from their noisy projections, we formulate a non-convex but analytically tractable optimization problem called OTTER. This problem can be interpreted as relaxed graph matching between the two projections of the bipartite network. OTTER's solutions can be derived explicitly and inspire a spectral algorithm, for which we provide network recovery guarantees. We also provide an alternative approach based on gradient descent that is more robust to noise compared to the spectral algorithm. Interestingly, this gradient descent approach resembles the message passing equations of an established gene regulatory network inference method, PANDA. Using three cancer-related data sets, we show that OTTER outperforms state-of-the-art inference methods in predicting transcription factor binding to gene regulatory regions. To encourage new graph matching applications to this problem, we have made all networks and validation data publicly available.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948921
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers