02/02/2021

DeHiB: Deep Hidden Backdoor Attack on Semi-supervised Learning via Adversarial Perturbation

Zhicong Yan, Gaolei Li, Yuan TIan, Jun Wu, Shenghong Li, Mingzhe Chen, H. Vincent Poor

Keywords:

Abstract: The threat of data-poisoning backdoor attacks on learning algorithms typically comes from the labeled data. However, in deep semi-supervised learning (SSL), unknown threats mainly stem from the unlabeled data. In this paper, we propose a novel deep hidden backdoor (DeHiB) attack scheme for SSL-based systems. In contrast to the conventional attacking methods, the DeHiB can inject malicious unlabeled training data to the semi-supervised learner so as to enable the SSL model to output premeditated results. In particular, a robust adversarial perturbation generator regularized by a unified objective function is proposed to generate poisoned data. To alleviate the negative impact of the trigger patterns on model accuracy and improve the attack success rate, a novel contrastive data poisoning strategy is designed. Using the proposed data poisoning scheme, one can implant the backdoor into the SSL model using the raw data without hand-crafted labels. Extensive experiments based on CIFAR10 and CIFAR100 datasets demonstrated the effectiveness and crypticity of the proposed scheme.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949087
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers