02/02/2021

Resilient Multi-Agent Reinforcement Learning with Adversarial Value Decomposition

Thomy Phan, Lenz Belzner, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, Claudia Linnhoff-Popien

Keywords:

Abstract: We focus on resilience in cooperative multi-agent systems, where agents can change their behavior due to udpates or failures of hardware and software components. Current state-of-the-art approaches to cooperative multi-agent reinforcement learning (MARL) have either focused on idealized settings without any changes or on very specialized scenarios, where the number of changing agents is fixed, e.g., in extreme cases with only one productive agent. Therefore, we propose Resilient Adversarial value Decomposition with Antagonist-Ratios (RADAR). RADAR offers a value decomposition scheme to train competing teams of varying size for improved resilience against arbitrary agent changes. We evaluate RADAR in two cooperative multi-agent domains and show that RADAR achieves better worst case performance w.r.t. arbitrary agent changes than state-of-the-art MARL.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948661
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers