02/02/2021

Uncertainty Quantification in CNN Through the Bootstrap of Convex Neural Networks

Hongfei Du, Emre Barut, Fang Jin

Keywords:

Abstract: Despite the popularity of Convolutional Neural Networks (CNN), the problem of uncertainty quantification (UQ) of CNN has been largely overlooked. Lack of efficient UQ tools severely limits the application of CNN in certain areas, such as medicine, where prediction uncertainty is critically important. Among the few existing UQ approaches that have been proposed for deep learning, none of them has theoretical consistency that can guarantee the uncertainty quality. To address this issue, we propose a novel bootstrap based framework for the estimation of prediction uncertainty. The inference procedure we use relies on convexified neural networks to establish the theoretical consistency of bootstrap. Our approach has a significantly less computational load than its competitors, as it relies on warm-starts at each bootstrap that avoids refitting the model from scratch. We further explore a novel transfer learning method so our framework can work on arbitrary neural networks. We experimentally demonstrate our approach has a much better performance compared to other baseline CNNs and state-of-the-art methods on various image datasets.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947987
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers