02/02/2021

Aspect-Level Sentiment-Controllable Review Generation with Mutual Learning Framework

Huimin Chen, Yankai Lin, Fanchao Qi, Jinyi Hu, Peng Li, Jie Zhou, Maosong Sun

Keywords:

Abstract: Review generation, aiming to automatically generate review text according to the given information, is proposed to assist in the unappealing review writing. However, most of existing methods only consider the overall sentiments of reviews and cannot achieve aspect-level sentiment control. Even though some previous studies attempt to generate aspect-level sentiment-controllable reviews, they usually require large-scale human annotations which are unavailable in the real world. To address this issue, we propose a mutual learning framework to take advantage of unlabeled data to assist the aspect-level sentiment-controllable review generation. The framework consists of a generator and a classifier which utilize confidence mechanism and reconstruction reward to enhance each other. Experimental results show our model can achieve aspect-sentiment control accuracy up to 88% without losing generation quality.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948465
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers