02/02/2021

BERT & Family Eat Word Salad: Experiments with Text Understanding

Ashim Gupta, Giorgi Kvernadze, Vivek Srikumar

Keywords:

Abstract: In this paper, we study the response of large models from the BERT family to incoherent inputs that should confuse any model that claims to understand natural language. We define simple heuristics to construct such examples. Our experiments show that state-of-the-art models consistently fail to recognize them as ill-formed, and instead produce high confidence predictions on them. As a consequence of this phenomenon, models trained on sentences with randomly permuted word order perform close to state-of-the-art models. To alleviate these issues, we show that if models are explicitly trained to recognize invalid inputs, they can be robust to such attacks without a drop in performance.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949345
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers