02/02/2021

Hierarchical Macro Discourse Parsing Based on Topic Segmentation

Feng Jiang, Yaxin Fan, Xiaomin Chu, Peifeng Li, Qiaoming Zhu, Fang Kong

Keywords:

Abstract: Hierarchically constructing micro (i.e., intra-sentence or inter-sentence) discourse structure trees using explicit boundaries (e.g., sentence and paragraph boundaries) has been proved to be an effective strategy. However, it is difficult to apply this strategy to document-level macro (i.e., inter-paragraph) discourse parsing, the more challenging task, due to the lack of explicit boundaries at the higher level. To alleviate this issue, we introduce a topic segmentation mechanism to detect implicit topic boundaries and then help the document-level macro discourse parser to construct better discourse trees hierarchically. In particular, our parser first splits a document into several sections using the topic boundaries that the topic segmentation detects. Then it builds a smaller and more accurate discourse sub-tree in each section and sequentially forms a whole tree for a document. The experimental results on both Chinese MCDTB and English RST-DT show that our proposed method outperforms the state-of-the-art baselines significantly.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948242
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers