02/02/2021

Quantum-inspired Neural Network for Conversational Emotion Recognition

Qiuchi Li, Dimitris Gkoumas, Alessandro Sordoni, Jian-Yun Nie, Massimo Melucci

Keywords:

Abstract: We provide a novel perspective on conversational emotion recognition by drawing an analogy between the task and a complete span of quantum measurement. We characterize different steps of quantum measurement in the process of recognizing speakers' emotions in conversation, and stitch them up with a quantum-like neural network. The quantum-like layers are implemented by complex-valued operations to ensure an authentic adoption of quantum concepts, which naturally enables conversational context modeling and multimodal fusion. We borrow an existing algorithm to learn the complex-valued network weights, so that the quantum-like procedure is conducted in a data-driven manner. Our model is comparable to state-of-the-art approaches on two benchmarking datasets, and provide a quantum view to understand conversational emotion recognition.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948011
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers