02/02/2021

Learning from My Friends: Few-Shot Personalized Conversation Systems via Social Networks

Zhiliang Tian, Wei Bi, Zihan Zhang, Dongkyu Lee, Yiping Song, Nevin L. Zhang

Keywords:

Abstract: Personalized conversation models (PCMs) generate responses according to speaker preferences. Existing personalized conversation tasks typically require models to extract speaker preferences from user descriptions or their conversation histories, which are scarce for newcomers and inactive users. In this paper, we propose a few-shot personalized conversation task with an auxiliary social network. The task requires models to generate personalized responses for a speaker given a few conversations from the speaker and a social network. Existing methods are mainly designed to incorporate descriptions or conversation histories. Those methods can hardly model speakers with so few conversations or connections between speakers. To better cater for newcomers with few resources, we propose a personalized conversation model (PCM) that learns to adapt to new speakers as well as enabling new speakers to learn from resource-rich speakers. Particularly, based on a meta-learning based PCM, we propose a task aggregator (TA) to collect other speakers' information from the social network. The TA provides prior knowledge of the new speaker in its meta-learning. Experimental results show our methods outperform all baselines in appropriateness, diversity, and consistency with speakers.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948300
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers