02/02/2021

Building Interpretable Interaction Trees for Deep NLP Models

Die Zhang, Hao Zhang, Huilin Zhou, Xiaoyi Bao, Da Huo, Ruizhao Chen, Xu Cheng, Mengyue Wu, Quanshi Zhang

Keywords:

Abstract: This paper proposes a method to disentangle and quantify interactions among words that are encoded inside a DNN for natural language processing. We construct a tree to encode salient interactions extracted by the DNN. Six metrics are proposed to analyze properties of interactions between constituents in a sentence. The interaction is defined based on Shapley values of words, which are considered as an unbiased estimation of word contributions to the network prediction. Our method is used to quantify word interactions encoded inside the BERT, ELMo, LSTM, CNN, and Transformer networks. Experimental results have provided a new perspective to understand these DNNs, and have demonstrated the effectiveness of our method.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947722
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers