02/02/2021

Computational Visual Ceramicology: Matching Image Outlines to Catalog Sketches

Barak Itkin, Lior Wolf, Nachum Dershowitz

Keywords:

Abstract: Field archeologists are called upon to identify potsherds, for which they rely on their professional experience and on reference works. We have developed a recognition method starting from images captured on site, which relies on the shape of the sherd's fracture outline. The method sets up a new target for deep-learning, integrating information from points along inner and outer surfaces to learn about shapes. Training the classifiers required tackling multiple challenges that arose on account of our working with real-world archeological data: paucity of labeled data; extreme imbalance between instances of different categories; and the need to avoid neglecting rare classes and to take note of minute distinguishing features of some classes. The scarcity of training data was overcome by using synthetically-produced virtual potsherds and by employing multiple data-augmentation techniques. A novel form of training loss allowed us to overcome classification problems caused by under-populated classes and inhomogeneous distribution of discriminative features.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38951053
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers