02/02/2021

Automated Reasoning and Learning for Automated Payroll Management

Sebastijan Dumancic, Wannes Meert, Stijn Goethals, Tim Stuyckens, Jelle Huygen, Koen Denies

Keywords:

Abstract: While payroll management is a crucial aspect of any business venture, anticipating the future financial impact of changes to the payroll policy is a challenging task due to the complexity of tax legislature. The goal of this work is to automatically explore potential payroll policies and find the optimal set of policies that satisfies the user's needs. To achieve this goal, we overcome two major challenges. First, we translate the tax legislative knowledge into a formal representation flexible enough to support a variety of scenarios in payroll calculations. Second, the legal knowledge is further compiled into a set of constraints from which a constraint solver can find the optimal policy. Furthermore, payroll computation is performed on the individual basis which might be expensive for companies with a large number of employees. To make the optimisation more efficient, we integrate it with a machine learning model that learns from the previous optimisation runs and speeds up the optimisation engine. The results of this work have been deployed by a social insurance fund.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38951125
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers