02/02/2021

Personalizing Individual Comfort in the Group Setting

Emil Laftchiev, Diego Romeres, Daniel Nikovski

Keywords:

Abstract: Maintaining individual thermal comfort in indoor spaces shared by multiple occupants is difficult because it requires both intuition about the thermal properties of the room, as well as an understanding of the thermal comfort preferences of each individual. We explore an approach to optimizing individual thermal comfort within a group through temperature set-point optimization of HVAC equipment. We propose a weakly-supervised algorithm to learn the individual thermal comfort preferences and an autoencoding framework to learn static approximations of room thermodynamics. We further propose two approaches to learn a control law that sets the HVAC set-points subject to the preferred user temperatures. The proposed method is tested on a real data-set obtained from workers in an open office. The results show that, on average, the temperature in the room at each user's location can be regulated to within 0.5C of the user's desired temperature.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38951131
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers