02/02/2021

Twitter Event Summarization by Exploiting Semantic Terms and Graph Network

Quanzhi Li, Qiong Zhang

Keywords:

Abstract: Twitter is a fast communication channel for gathering and spreading breaking news, and it generates a large volume of tweets for most events. Automatically creating a summary for an event is necessary and important. In this study, we explored two extractive approaches for summarizing events on Twitter. The first one exploits the semantic types of event related terms, and ranks the tweets based on the score computed from these semantic terms. The second one utilizes a graph convolutional network built from a tweet relation graph to generate tweet hidden features for tweet salience estimation. And the most salient tweets are selected as the summary of the event. Our experiments show that these two approaches outperform the compared methods.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38951145
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers