03/05/2021

EigenGame: PCA as a Nash Equilibrium

Ian Gemp, Brian McWilliams, Claire Vernade, Thore Graepel

Keywords: singular value decomposition, svd, eigendecomposition, nash, principal components analysis, pca, games

Abstract: We present a novel view on principal components analysis as a competitive game in which each approximate eigenvector is controlled by a player whose goal is to maximize their own utility function. We analyze the properties of this PCA game and the behavior of its gradient based updates. The resulting algorithm---which combines elements from Oja's rule with a generalized Gram-Schmidt orthogonalization---is naturally decentralized and hence parallelizable through message passing. We demonstrate the scalability of the algorithm with experiments on large image datasets and neural network activations. We discuss how this new view of PCA as a differentiable game can lead to further algorithmic developments and insights.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers