03/05/2021

Diverse Video Generation using a Gaussian Process Trigger

Gaurav Shrivastava, Abhinav Shrivastava

Keywords: diverse video generation, gaussian process priors, video generation, future frame generation, video synthesis

Abstract: Generating future frames given a few context (or past) frames is a challenging task. It requires modeling the temporal coherence of videos as well as multi-modality in terms of diversity in the potential future states. Current variational approaches for video generation tend to marginalize over multi-modal future outcomes. Instead, we propose to explicitly model the multi-modality in the future outcomes and leverage it to sample diverse futures. Our approach, Diverse Video Generator, uses a GP to learn priors on future states given the past and maintains a probability distribution over possible futures given a particular sample. We leverage the changes in this distribution over time to control the sampling of diverse future states by estimating the end of on-going sequences. In particular, we use the variance of GP over the output function space to trigger a change in the action sequence. We achieve state-of-the-art results on diverse future frame generation in terms of reconstruction quality and diversity of the generated sequences.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers