03/05/2021

Revisiting Hierarchical Approach for Persistent Long-Term Video Prediction

Wonkwang Lee, Whie Jung, Han Zhang, Ting Chen, Jing Yu Koh, Thomas E Huang, Hyungsuk Yoon, Honglak Lee, Seunghoon Hong

Keywords: generative model, long-term prediction, Video prediction

Abstract: Learning to predict the long-term future of video frames is notoriously challenging due to the inherent ambiguities in a distant future and dramatic amplification of prediction error over time. Despite the recent advances in the literature, existing approaches are limited to moderately short-term prediction (less than a few seconds), while extrapolating it to a longer future quickly leads to destruction in structure and content. In this work, we revisit the hierarchical models in video prediction. Our method generates future frames by first estimating a sequence of dense semantic structures and subsequently translating the estimated structures to pixels by video-to-video translation model. Despite the simplicity, we show that modeling structures and their dynamics in categorical structure space with stochastic sequential estimator leads to surprisingly successful long-term prediction. We evaluate our method on two challenging video prediction scenarios, \emph{car driving} and \emph{human dancing}, and demonstrate that it can generate complicated scene structures and motions over a very long time horizon (\ie~thousands frames), setting a new standard of video prediction with orders of magnitude longer prediction time than existing approaches. Video results are available at https://1konny.github.io/HVP/.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers