19/04/2021

Understanding pre-editing for black-box neural machine translation

Rei Miyata, Atsushi Fujita

Keywords:

Abstract: Pre-editing is the process of modifying the source text (ST) so that it can be translated by machine translation (MT) in a better quality. Despite the unpredictability of black-box neural MT (NMT), pre-editing has been deployed in various practical MT use cases. Although many studies have demonstrated the effectiveness of pre-editing methods for particular settings, thus far, a deep understanding of what pre-editing is and how it works for black-box NMT is lacking. To elicit such understanding, we extensively investigated human pre-editing practices. We first implemented a protocol to incrementally record the minimum edits for each ST and collected 6,652 instances of pre-editing across three translation directions, two MT systems, and four text domains. We then analysed the instances from three perspectives: the characteristics of the pre-edited ST, the diversity of pre-editing operations, and the impact of the pre-editing operations on NMT outputs. Our findings include the following: (1) enhancing the explicitness of the meaning of an ST and its syntactic structure is more important for obtaining better translations than making the ST shorter and simpler, and (2) although the impact of pre-editing on NMT is generally unpredictable, there are some tendencies of changes in the NMT outputs depending on the editing operation types.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers