19/04/2021

Language models as knowledge bases: On entity representations, storage capacity, and paraphrased queries

Benjamin Heinzerling, Kentaro Inui

Keywords:

Abstract: Pretrained language models have been suggested as a possible alternative or complement to structured knowledge bases. However, this emerging LM-as-KB paradigm has so far only been considered in a very limited setting, which only allows handling 21k entities whose name is found in common LM vocabularies. Furthermore, a major benefit of this paradigm, i.e., querying the KB using natural language paraphrases, is underexplored. Here we formulate two basic requirements for treating LMs as KBs: (i) the ability to store a large number facts involving a large number of entities and (ii) the ability to query stored facts. We explore three entity representations that allow LMs to handle millions of entities and present a detailed case study on paraphrased querying of facts stored in LMs, thereby providing a proof-of-concept that language models can indeed serve as knowledge bases.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers