19/04/2021

Us vs. Them: A dataset of populist attitudes, news bias and emotions

Pere-Lluı́s Huguet Cabot, David Abadi, Agneta Fischer, Ekaterina Shutova

Keywords:

Abstract: Computational modelling of political discourse tasks has become an increasingly important area of research in the field of natural language processing. Populist rhetoric has risen across the political sphere in recent years; however, due to its complex nature, computational approaches to it have been scarce. In this paper, we present the new Us vs. Them dataset, consisting of 6861 Reddit comments annotated for populist attitudes and the first large-scale computational models of this phenomenon. We investigate the relationship between populist mindsets and social groups, as well as a range of emotions typically associated with these. We set a baseline for two tasks associated with populist attitudes and present a set of multi-task learning models that leverage and demonstrate the importance of emotion and group identification as auxiliary tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers