19/04/2021

Exploiting definitions for frame identification

Tianyu Jiang, Ellen Riloff

Keywords:

Abstract: Frame identification is one of the key challenges for frame-semantic parsing. The goal of this task is to determine which frame best captures the meaning of a target word or phrase in a sentence. We present a new model for frame identification that uses a pre-trained transformer model to generate representations for frames and lexical units (senses) using their formal definitions in FrameNet. Our frame identification model assesses the suitability of a frame for a target word in a sentence based on the semantic coherence of their meanings. We evaluate our model on three data sets and show that it consistently achieves better performance than previous systems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers