19/04/2021

DISK-CSV: Distilling interpretable semantic knowledge with a class semantic vector

Housam Khalifa Bashier, Mi-Young Kim, Randy Goebel

Keywords:

Abstract: Neural networks (NN) applied to natural language processing (NLP) are becoming deeper and more complex, making them increasingly difficult to understand and interpret. Even in applications of limited scope on fixed data, the creation of these complex “black-boxes” creates substantial challenges for debugging, understanding, and generalization. But rapid development in this field has now lead to building more straightforward and interpretable models. We propose a new technique (DISK-CSV) to distill knowledge concurrently from any neural network architecture for text classification, captured as a lightweight interpretable/explainable classifier. Across multiple datasets, our approach achieves better performance than the target black-box. In addition, our approach provides better explanations than existing techniques.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers