19/04/2021

Adaptation of back-translation to automatic post-editing for synthetic data generation

WonKee Lee, Baikjin Jung, Jaehun Shin, Jong-Hyeok Lee

Keywords:

Abstract: Automatic Post-Editing (APE) aims to correct errors in the output of a given machine translation (MT) system. Although data-driven approaches have become prevalent also in the APE task as in many other NLP tasks, there has been a lack of qualified training data due to the high cost of manual construction. eSCAPE, a synthetic APE corpus, has been widely used to alleviate the data scarcity, but it might not address genuine APE corpora’s characteristic that the post-edited sentence should be a minimally edited revision of the given MT output. Therefore, we propose two new methods of synthesizing additional MT outputs by adapting back-translation to the APE task, obtaining robust enlargements of the existing synthetic APE training dataset. Experimental results on the WMT English-German APE benchmarks demonstrate that our enlarged datasets are effective in improving APE performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers