14/09/2020

6VecLM: Language Modeling in Vector Space for IPv6 Target Generation

Tianyu Cui, Gang Xiong, Gaopeng Gou, Junzheng Shi, Wei Xia

Keywords: ipv6 target generation, deep learning, data mining, network measurement, natural language processing

Abstract: Fast IPv6 scanning is challenging in the field of network measurement as it requires exploring the whole IPv6 address space but limited by current computational power. Researchers propose to obtain possible active target candidate sets to probe by algorithmically analyzing the active seed sets. However, IPv6 addresses lack semantic information and contain numerous addressing schemes, leading to the difficulty of designing effective algorithms. In this paper, we introduce our approach 6VecLM to explore achieving such target generation algorithms. The architecture can map addresses into a vector space to interpret semantic relationships and uses a Transformer network to build IPv6 language models for predicting address sequence. Experiments indicate that our approach can perform semantic classification on address space. By adding a new generation approach, our model possesses a controllable word innovation capability compared to conventional language models. The work outperformed the state-of-the-art target generation algorithms on two active address datasets by reaching more quality candidate sets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers