14/09/2020

A Deep Reinforcement Learning Framework for Optimal Trade Execution

Siyu Lin, Peter Beling

Keywords: deep reinforcement learning, optimal trade execution, shaped reward structure, zero ending inventory constraint, us equities

Abstract: In this article, we propose a deep reinforcement learning based framework to learn to minimize trade execution costs by splitting a sell order into child orders and execute them sequentially over a fixed period. The framework is based on a variant of the Deep Q-Network (DQN) algorithm that integrates the Double DQN, Dueling Network, and Noisy Nets. In contrast to previous research work, which uses implementation shortfall as the immediate rewards, we use a shaped reward structure, and we also incorporate the zero-ending inventory constraint into the DQN algorithm by slightly modifying the Q-function updates relative to standard Q-learning at the final step.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers