Abstract:
In this article, we propose a deep reinforcement learning based framework to learn to minimize trade execution costs by splitting a sell order into child orders and execute them sequentially over a fixed period. The framework is based on a variant of the Deep Q-Network (DQN) algorithm that integrates the Double DQN, Dueling Network, and Noisy Nets. In contrast to previous research work, which uses implementation shortfall as the immediate rewards, we use a shaped reward structure, and we also incorporate the zero-ending inventory constraint into the DQN algorithm by slightly modifying the Q-function updates relative to standard Q-learning at the final step.