Abstract:
While exponential growth in public genomic data can afford great insights into biological processes underlying diseases, a lack of structured metadata often impedes its timely discovery for analysis. In the Gene Expression Omnibus, for example, descriptions of genomic samples lack structure, with different terminology (such as “breast cancer”, “breast tumor”, and “malignant neoplasm of breast”) used to express the same concept. To remedy this, we learn models to extract salient information from this textual metadata. Rather than treating the problem as classification or named entity recognition, we model it as machine translation, leveraging state-of-the-art sequence-to-sequence (seq2seq) models to directly map unstructured input into a structured text format. The application of such models greatly simplifies training and allows for imputation of output fields that are implied but never explicitly mentioned in the input text.