Abstract:
Mean shift is a popular and powerful clustering method. While techniques exist that improve its absolute runtime, no method has been able to effectively improve its quadratic time complexity with regard to dataset size. To enable development of an alternative, faster method that leads to the same results, we first contribute the formal cluster definition, which mean shift implicitly follows. Based on this definition we derive and contribute Gauss shift – a method that has linear time complexity. We quantify the characteristics of Gauss shift using synthetic datasets with known topologies. We further qualify Gauss shift using real-life data from active neuroscience research, which is the most comprehensive description of any subcellular organelle to date.