13/04/2021

Differentially private weighted sampling

Edith Cohen, Ofir Geri, Tamas Sarlos, Uri Stemmer

Keywords:

Abstract: Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile summary that provides a sparse set of representative keys and supports approximate evaluations of query statistics. We propose private weighted sampling (PWS): A method that sanitizes a weighted sample as to ensure element-level differential privacy, while retaining its utility to the maximum extent possible. PWS maximizes the reporting probabilities of keys and estimation quality of a broad family of statistics. PWS improves over the state of the art even for the well-studied special case of private histograms, when no sampling is performed. We empirically observe significant performance gains of 20

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers