13/04/2021

Kernel interpolation for scalable online gaussian processes

Samuel Stanton, Wesley Maddox, Ian Delbridge, Andrew Gordon Wilson

Keywords:

Abstract: Gaussian processes (GPs) provide a gold standard for performance in online settings, such as sample-efficient control and black box optimization, where we need to update a posterior distribution as we acquire data in a sequential online setting. However, updating a GP posterior to accommodate even a single new observation after having observed n points incurs at least \mathcal{O}(n) computations in the exact setting. We show how to use structured kernel interpolation to efficiently reuse computations for constant-time \mathcal{O}(1) online updates with respect to the number of points n, while retaining exact inference. We demonstrate the promise of our approach in a range of online regression and classification settings, Bayesian optimization, and active sampling to reduce error in malaria incidence forecasting.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers