13/04/2021

Efficient designs of SLOPE penalty sequences in finite dimension

Yiliang Zhang, Zhiqi Bu

Keywords:

Abstract: In linear regression, SLOPE is a new convex analysis method that generalizes the Lasso via the sorted \ell_1 penalty: larger fitted coefficients are penalized more heavily. This magnitude-dependent regularization requires an input of penalty sequence \blam, instead of a scalar penalty as in the Lasso case, thus making the design extremely expensive in computation. In this paper, we propose two efficient algorithms to design the possibly high-dimensional SLOPE penalty, in order to minimize the mean squared error. For Gaussian data matrices, we propose a first order Projected Gradient Descent (PGD) under the Approximate Message Passing regime. For general data matrices, we present a zero-th order Coordinate Descent (CD) to design a sub-class of SLOPE, referred to as the k-level SLOPE. Our CD allows a useful trade-off between the accuracy and the computation speed. We demonstrate the performance of SLOPE with our designs via extensive experiments on synthetic data and real-world datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers