05/01/2021

maskedFaceNet: A Progressive Semi-Supervised Masked Face Detector

Shitala Prasad, Yiqun Li, Dongyun Lin, Dong Sheng

Keywords:

Abstract: To reduce the risk of infecting or being infected by the recent COVID-19 virus, wearing mask is enforced or recommended by many countries. AI based system for automatically detecting whether individuals are wearing face mask becomes an urgent requirement in high risk facilities and crowded public places. Due to lacking of existing masked face datasets and the urgent low-cost application requirement, we propose a progressive semi-supervised learning method - called maskedFaceNet to minimize the efforts on data annotation and letting deep models to learn by using less annotated training data. With this method, the detection accuracy is further improved progressively while adapting to various application scenarios. Experimental results show that our maskedFaceNet is more efficient and accurate compared to other methods. Furthermore, we also contribute two masked face datasets for benchmarking and for the benefit of future research.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers