05/01/2021

Lip-Reading With Densely Connected Temporal Convolutional Networks

Pingchuan Ma, Yujiang Wang, Jie Shen, Stavros Petridis, Maja Pantic

Keywords:

Abstract: In this work, we present the Densely Connected Temporal Convolutional Network (DC-TCN) for lip-reading of isolated words. Although Temporal Convolutional Networks (TCN) have recently demonstrated great potential in many vision tasks, its receptive fields are not dense enough to model the complex temporal dynamics in lip-reading scenarios. To address this problem, we introduce dense connections into the network to capture more robust temporal features. Moreover, our approach utilises the Squeeze-and-Excitation block, a light-weight attention mechanism, to further enhance the model's classification power. Without bells and whistles, our DC-TCN method has achieved 88.36% accuracy on the Lip Reading in the Wild (LRW) dataset and 43.65% on the LRW-1000 dataset, which has surpassed all the baseline methods and is the new state-of-the-art on both datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers