05/01/2021

The Devil Is in the Boundary: Exploiting Boundary Representation for Basis-Based Instance Segmentation

Myungchul Kim, Sanghyun Woo, Dahun Kim, In So Kweon

Keywords:

Abstract: Pursuing a more coherent scene understanding towards real-time vision applications, single-stage instance segmentation has recently gained popularity, achieving a simpler and more efficient design than its two-stage counterparts. Besides, its global mask representation often leads to superior accuracy to the two-stage Mask R-CNN which has been dominant thus far. Despite the promising advances in single-stage methods, finer delineation of instance boundaries still remains unexcavated. Indeed, boundary information provides a strong shape representation that can operate in synergy with the fully-convolutional mask features of the single-stage segmented. In this work, we propose Boundary Basis based Instance Segmentation(B2Inst) to learn a global boundary representation that can complement existing global-mask-based methods that are often lacking high-frequency details. Besides, we devise a unified quality measure of both mask and boundary and introduce a network block that learns to score the per-instance predictions of itself. When applied to the strongest baselines in single-stage instance segmentation, our B2Inst leads to consistent improvements and accurately parse out the instance boundaries in a scene. Regardless of being single-stage or two-stage frameworks, we outperform the existing state-of-the-art methods on the COCO dataset with the same ResNet-50 and ResNet-101 backbones.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers