05/01/2021

Effective Fusion Factor in FPN for Tiny Object Detection

Yuqi Gong, Xuehui Yu, Yao Ding, Xiaoke Peng, Jian Zhao, Zhenjun Han

Keywords:

Abstract: FPN-based detectors have made significant progress in general object detection,e.g., MS COCO and CityPersons.However, these detectors fail in certain application scenarios,e.g., tiny object detection. In this paper, we argue that the top-down connections between adjacent layers in FPN bring two-side influences for tiny object detection, not only positive. We propose a novel concept, fusion factor, to control information that deep layers deliver to shallow layers,for adapting FPN to tiny object detection. After series of experiments and analysis, we explore how to estimate an effective value of fusion factor for a particular dataset by a statistical method. The estimation is dependent on the number of objects distributed to each layer. Comprehensive experiments are conducted on tiny object detection datasets,e.g., TinyPerson and Tiny CityPersons. Our results show that when configuring FPN with a proper fusion factor, the network is able to achieve significant performance gains over the baseline on tiny object detection datasets. Codes and models will be released.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers