05/01/2021

Red Carpet to Fight Club: Partially-Supervised Domain Transfer for Face Recognition in Violent Videos

Yunus Can Bilge, Mehmet Kerim Yucel, Ramazan Gokberk Cinbis, Nazli Ikizler-Cinbis, Pinar Duygulu

Keywords:

Abstract: In many real-world problems, there is typically a large discrepancy between the characteristics of data used in training versus deployment. A prime example is the analysis of aggression videos: in a criminal incidence, typically suspects need to be identified based on their clean portrait-like photos, instead of their prior video recordings. This results in three major challenges; large domain discrepancy between violence videos and ID-photos, the lack of video examples for most individuals and limited training data availability. To mimic such scenarios, we formulate a realistic domain-transfer problem, where the goal is to transfer the recognition model trained on clean posed images to the target domain of violent videos, where training videos are available only for a subset of subjects. To this end, we introduce the "WildestFaces" dataset, tailored to study cross-domain recognition under a variety of adverse conditions. We divide the task of transferring a recognition model from the domain of clean images to the violent videos into two sub-problems and tackle them using (i) stacked affine-transforms for classifier-transfer, (ii) attention-driven pooling for temporal-adaptation. We additionally formulate a self attention based model for domain-transfer. We establish a rigorous evaluation protocol for this "clean-to-violent" recognition task, and present a detailed analysis of the proposed dataset and the methods. Our experiments highlight the unique challenges introduced by the Wildest-Faces dataset and the advantages of the proposed approach.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers