05/01/2021

A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation

Ameni Trabelsi, Mohamed Chaabane, Nathaniel Blanchard, Ross Beveridge

Keywords:

Abstract: In this paper, we present a novel, end-to-end 6D object pose estimation method that operates on RGB inputs. Our approach is composed of 2 main components: the first component classifies the objects in the input image and proposes an initial 6D pose estimate through a multi-task, CNN-based encoder/multi-decoder module. The second component, a refinement module, includes a renderer and a multi-attentional pose refinement network, which iteratively refines the estimated poses by utilizing both appearance features and flow vectors. Our refiner takes advantage of the hybrid representation of the initial pose estimates to predict the relative errors with respect to the target poses. It is further augmented by a spatial multi-attention block that emphasizes objects' discriminative feature parts. Experiments on three benchmarks for 6D pose estimation show that our proposed pipeline outperforms state-of-the-art RGB-based methods with competitive runtime performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers